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A simple and efficient scheme is presented for simultaneously solving the ionisation 
dynamics and the electron kinetic equations. The atomic processes accounted for include 
collisional excitation and ionisation, dielectronic and radiative recombination. The integro- 
differential equations governing the evolution of the ionisation stages and the electron 
distribution function are approximated numerically with a Gauss quadrature scheme and 
finite differences. The result is a set of algebraic nonlinear equations which are solved by 
iterations. 0 1991 Academic Press, Inc. 

1. INTRODUCTION 

Several key problems of plasma physics require a solution of the particle distribu- 
tion functions, together with a proper account of certain atomic processes. A precise 
knowledge of the distribution function is necessary whenever significant deviations 
from a Maxwell Boltzmann distribution arise. The inclusion of atomic processes is 
often required because of the contribution to particle and energy balance from these 
processes. This is the case, for example, in plasmas produced by very short laser 
pulses, plasmas in or near a strong temperature gradient, or at the edge of magneti- 
cally confined plasmas when fueling, recycling or sputtering are important. Methods 
have already been proposed to solve kinetic equations alone [l-S], or atomic rate 
equations within a fluid model [6, 71. 

In this paper, we present a simple and efficient algorithm for consistently 
modelling atomic processes within a kinetic simulation code. In short, the method 
consists of solving the Boltzmann equation for the electron distribution function 
and the ionization balance equation for the density of charge stages simultaneously 
and fully implicitly. To this end, the electron distribution function is partitioned 
into a number of energy groups. The electron kinetic equation, together with the 
ionisation rate equation then constitute a system of coupled nonlinear equations 
which are solved by iterations. The method presented is intended for cases where 
the atomic physics is well approximated by the coronal model, i.e., for low density 
optically thin plasmas in which multi-step processes and three body recombination 
are sufficiently small to be neglected or treated perturbatively. 

The inclusion of atomic processes to a transport simulation code such as 
described in Refs. [2, 31, tends to increase the required CPU time significantly. This 
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increase is caused by the many ionisation stages and, for each one, the several 
transitions that need to be accounted for. This burden is particularly heavy if 
mixtures of several species, or if high Z ions are considered. An efficient procedure 
for modelling such physics is therefore desirable. The remainder of the paper is 
organized as follows. In Section 2, we present the general equations, discuss some 
of their properties and give a simple solution algorithm. Section 3 gives some 
illustrative numerical results. In these examples, the time splitting technique is used 
to model inelastic Coulomb collisions between electrons together with atomic pro- 
cesses. Finally, Section 4 contains a summary of our results and some concluding 
remarks. 

2. MODEL EQUATIONS 

In this section we present ionisation-recombination and electron kinetic equa- 
tions. We discuss some of their general properties, and propose a simple solution 
method. For simplicity, we assume a spatially homogeneous and isotropic plasma 
and consider a single ion species of atomic number Z. By using the time splitting 
technique, the solution algorithm presented here can readily be used in a more 
general context, accounting, for example, for transport in an inhomogeneous 
medium. 

A. Governing Equations 

The density of the various ionisation stages is written as ni, with i varying from 
0 for neutral, to Z for fully stripped ions. The equations which describe the 
ionisation dynamics are assumed to be of the form 

dn, 
dt=ni-’ s d3v d3v, d3v,vof_, (v; v,, v2)f(v) 

- ni s d3v d3v, d3v2 
1 

val(u;v,,v~)+~vvI~:R(v,li,;li~)f(lil) f(v) 1 
-ni d3vvof(v)f(v)+n,+, d3vv~~+,(v)f(v) I I 

+nj+l s d3v d3v, d3v,; v,vzciT+R, (v,, v,; V)f(V,)“f(VA (1) 

where cr:, a:, and gTR are the cross sections for collisional ionisation, radiative and 
dielectronic recombination, and three body recombination respectively, for 
ionisation stage i. In this notation, a semicolon is used to separate the velocity 
indices of the primary and secondary electrons. For example, a!(~; v,, v2) is the 
differential cross section for ionisation associated with an electron of velocity v, 
producing an ion in stage i + 1 plus two secondary electrons of velocities vI and oz; 



354 MARCHAND AND MATTE 

i.e., Ai+e(u)-rAi+i + e(vi) + e(vz). The terms involving ni_ i or n,, , are assumed 
to vanish identically, when i = 0 or Z, respectively. We note that Eq. (1) is not of 
the most general form possible. In particular, it couples the various ionisation 
stages to adjacent stages only. Also, the rates of ionisation and recombination are 
assumed to be entirely determined by the density of the various ionisation stages, 
without explicit reference to the populations of excited states. This approximation 
is certainly valid in the coronal limit, where the ions are assumed to be in their 
ground state at the start of any collisional process. More generally, it is also 
consistent with the coronal radiative model in which the transition rates between 
the excited states of a given ionisation stage, are assumed to be large compared 
with the ionisation and recombination rates [8]. In this case, the distribution of 
excited states is in a quasi steady state for every ion, and it is entirely determined 
by the plasma distribution function. In this section, we limit our discussion to 
Eq. (1) because it is generally considered to be adequate for modelling ionisation 
dynamics in several plasmas of interest. 

The equation governing the electron distribution function is 

af z 
z=i=o”’ 1 .[j’ d3vlC--~E(v;U,)f(u)+v,~E(v,;u)f(v1)1 

+Sd 3v, d3v, 
[ 

-J:(u; VI, ~2)f(U)+2v,of(v,; v, Qf(V,) 

- UWTR(V> 01; %)f(U)f(Ul) 

(2) 

where G:(u; v, ) is the cross section for collisional excitation (if v > vi) or de-excita- 
tion (if u > ui) for ion stage i. It is assumed here, without loss of generality, that 
oj(v; ul, v2) and oTR(v,, v,; u) are symmetric with respect to the interchange of v, 
and u2. 

B. Properties 

The general properties of Eqs. (1) have been discussed by Pert [6] when the 
distribution function (and thus the rates) is given a priori. We are interested here 
in the properties of the combined set of equations (1) and (2). These are: 

(i) Conservation of the number of ions. It follows from Eq. (l), that the total 
number of ions, n, + . . + n, is constant. 

(ii) Conservation of the charge density. With the definition 

p= 5 in,-jd3vf(u), 
i= 1 
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it follows that dp/dt = 0, and Eqs. (1) and (2) therefore conserve the net charge 
density. 

(iii) Decay of the total energy. Equations (1) and (2) contain no energy sour- 
ces but they do, in general, contain energy sink terms (radiative losses). It follows 
that the total energy must be a decreasing function of time. This is most easily seen 
in the absence of super elastic processes, i.e., if ~f(ui ; u2) = 0 whenever u, < u2. The 
total plasma energy is then defined as 

u= 5 nisi + [ d3U $mv2f(v), 
i= I 

(3) 

with the cumulative ionisation energies cli defined recursively in terms of the 
ionisation potentials xi as a, = 0, and cli = c(,- i + xi-, for i3 1. In the presence of 
super elastic processes, the total energy (including the excitation energy) can also 
be shown to be a decreasing function of time. 

Properties (i) and (ii) are important conservation properties which must be 
preserved in the approximate numerical solution scheme. This is particularly true of 
charge conservation since large spurious electric fields could arise in spatially non- 
homogeneous simulations if the charge failed to be conserved. As a consequence of 
property (iii), the only steady state solution of Eqs. (1) and (2) is for a cold neutral 
gas. Nontrivial steady state solutions exist if electron-electron collisions are taken 
into account to couple the various energy groups off and if an energy source term 
is included in Eq. (2). Such a term could be associated, for example, with energy 
transport, or local heating. We note finally that, while the total energy is, in 
general, a decreasing function of time, the temperature of the plasma may be 
increasing. This can happen in a recombining plasma, because of the larger recom- 
bination cross section associated with the less energetic particles in radiative 
recombination. 

C. Solution Algorithm 

In order to solve Eqs. (1) and (2), we approximate time derivatives by finite 
differences, 

ds g+-g- 
ii= At (4) 

for all dynamic variables g. The superscripts + and - refer to the variable 
after and before time step At, respectively. Velocity space is limited to a finite 
interval 0 < 0 < urnax. It is then partitioned into N subintervals with boundaries 
v,=o<v,< ..’ <UN=Vmax. The distribution function is represented by an N com- 
ponent vector ( fi, . . . . fN), associated with the N velocity (or energy) subintervals. 
The velocity integrals are approximated by quadrature schemes of the form 

I d3v f(v)- $ w,f,, 
i=l 
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where the weight coefficients wj are functions of the velocities yi satisfying the 
consistency condition 

(6) 

for any integrable function J: This condition is not very restrictive in that it 
may be satisfied by a wide choice of partitions {vi} and weights {wi>. A further 
restriction is often imposed by requiring consistency with the other numerical 
solution algorithms used in the simulation. For example, if both atomic processes 
and Coulomb collisions need to be accounted for, it is important that the 
velocity integration scheme used in Eq. (5) be consistent with the conservation 
properties of the collision operator. For example, if Coulomb collisions are 
treated in the Fokker-Planck approximation and if the resulting equation is 
advanced in time with Cooper and Chang’s implicit scheme [9], this implies that 
Wi = vf- I,z(vj- v,_ 1), with v,~ ,,* = (II- 1 + v,)/2. With these approximations for the 
time derivatives and the velocity integrals, Eqs. (1) and (2) yield a set of N + Z + 1 
coupled nonlinear equations in the unknown variables n+ and f,?, of the form 

~h~~+,(j)f:w~+Z5e,6,~:,x,(j,k;i)f~f~wjw~w,] 
I jkl 

1 ~ 

=dtni 
(7) 

for i = 0, . . . . Z, and 

+ c C~j~k~TR(j,k;I)fk+wkw,+~~~R(j) 
k>j I 

-W[C v”kU”(k;j) f:wk+ c c %ko:(k;j, l)f:wkwl 
I k>j k>j I 1 

=-Jf;+xn:[Z ckCJ”(k;j) fk+wk+ c c 26koj(k;j, l)f:wkw/ 
I k<i k<j I 
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for j= 1, . . . . N. The velocities iYj must be defined so as to be representative of the 
subintervals [v,_ , , u,]. In the following, we assume uj = (u,- I + uj)/2. For brevity, 
the velocities Cj appearing as arguments of the differential cross sections are 
replaced by their subscript j. Unless otherwise stated, the summations extend over 
the entire range possible, i.e., from 0 to Z for ionisation stages and from 1 to N for 
the components of the distribution function. Equation (8) has been written so that 
the left-hand side is characterized by an upper triangular operator, while the right 
side (excepting the first term) is mostly lower triangular with zero diagonal. We 
note that the second summation on the right-hand side of Eq. (8) accounts for 
ionisation from auto ionizing states. The last summation, with 6: + v”y < 6,” accounts 
for the inverse process, that is, recombination into auto ionizing states. 

(i) The coronal limit. It is interesting to note that, in the absence of three- 
body recombination and super elastic collisions; i.e., if a:(/~; j) = 0, whenever 
fik < iJj, and aj(k; j, I) = 0, whenever i!i < ii,? + fi:, the summations on the right-hand 
side of Eq. (8) vanish, and the system of Eqs. (8) becomes linear upper triangular 
in f +. This suggests a two-stage iterative solution for Eqs. (7) and (8), in which 
Eq. (8) is first solved for f + for an assumed distribution of ionisation stages H+. 
Because of the triangular structure of the matrix equation for ,f+, this can be done 
directly, in a single descending sweep from j= N to j= 1. In the second stage, the 
tridiagonal set of Eqs. (7) is solved for n,?, assuming the fi+ found in the first stage. 
These n+ are substituted back in Eq. (8), and the procedure is repeated until 
convergence. Specifically, we rewrite Eqs. (7) and (8) as 

and 

z Tik,jfifnL =% (9) 

where Tik, j is a tridiagonal operator for ni and U, jk is an upper triangular operator 
for fi. In these expressions, a comma is used to separate indices associated with 
charge stages and the components of the distribution function. Because Eqs. (9) and 
(10) are nonlinear, they need to be solved by iterations. Let fj' and ny be the 
starting values for f and n at a given time step. In practice, f/" = f,: and ny = n,: 

prove to be a convenient choice. The components f” and na at iteration tl are 
defined recursively by 

C lJi,jkn~ f:” =fz 
ik 

(11) 

and 

(12) 
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These iterations must be repeated until convergence. A detailed discussion of 
convergence is given in Section 3C. 

(ii) Extension to non-coronal plasmas. The solution procedure presented in 
the previous paragraph can readily be extended to account for super elastic pro- 
cesses and three-body recombination, provided that these effects are sufficiently 
small to be treated perturbatively. This can be done, for example, by rewriting 
Eq. (8) in the form 

where U,,, is the same operator as in Eq. (lo), Bi,PI = fijiZjkoLrR(j, k; ~‘)wjwk acounts 
for three body recombination, and Li,jk is a lower triangular operator (with zero 
diagonal) for fi which accounts for all super elastic processes which are linear in J 
We note that if PZ,? were known and if all the summations in the right-hand side 
of Eq. (13) vanished, a solution for f + could be found directly in a single 
descending sweep for j= N to j= 1. This suggests a similar iterative solution as for 
the coronal limit, with the exeption that Eq. (11) is now replaced by 

=f$+~L,,jkn~f~-~ 1 Bi,ikn~f,*f~+CBi,k,n:f~f;. 
ik il k<; ikl 

(14) 

We note that this extension of the solution algorithm is proposed here without 
verification; the only simulations made so far have assumed the coronal limit. 

3. EXAMPLE RESULTS AND DISCUSSION 

The solution algorithm presented in the previous section has been applied to 
model the ionisation and recombination in a low density carbon plasma in the 
coronal approximation. The ionisation cross sections are computed as a function of 
energy from analytic fits [lo]. The cross sections for excitation, radiative, and 
dielectronic recombination are such that they reproduce the corresponding rates 
used in the MIST code [ 111 for a Maxwellian electron distribution function. The 
accuracy of these empirical cross sections may be questionable, particularly for low 
ionisation stages. The solution method, however, is not sensitive to the particular 
atomic model selected, and it could just as well be used with a more complete and 
accurate set of cross sections. In the calculation of the excitation and recombination 
cross sections, the energy levels are calculated approximately in the screened 
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hydrogenic ion model [ 12, 131. In the simulations considered here, Coulomb colli- 
sions are accounted for, together with atomic processes, using a time splitting 
technique. That is, at each time step, atomic processes and collisions are treated 
separately in two distinct steps. Collisions are treated in the Fokker-Planck 
approximation [14] and the associated equations are solved using Chang and 
Cooper’s implicit scheme [9]. We note that because of the weak density and tem- 
perature dependence of the collisional interruption term appearing in the empirical 
cross sections for dielectronic recombination, the cross sections and much of the 
calculations involved in the matrix U need not be repeated at each iteration step. 
Two cases are considered. The first is for a rapidly ionizing plasma while the second 
is for a recombining plasma. In each case, a solution is first found with a relatively 
large time step, which allows appreciable variations ( - 10%) in the electron mean 
energy at each step. In order to assess the accuracy of this solution, a more accurate 
simulation is then made with a much smaller time step. All simulations are carried 
with an go-point mesh, uniform in velocity, extending from 0 to four times the 
initial electron thermal velocity, u,~ = (~T/M,)“~. 

A. Ionizing Plasma 

We consider a plasma made initially of 100% singly ionized carbon ions of den- 
sity nc= 101sm-3, with an electron temperature T, = 1OOeV. For these parameters, 
the ionisation and Coulomb collision [ 151 time scales are approximately equal, 
Tionis - zcoI. In order to test the convergence of the solution algorithm, we choose 
a sufficiently long time step for macroscopic quantities to vary significantly during 
a single time step. Specifically, dt is one-sixteenth of the reciprocal of the initial 
ionisation rate for CII. For the parameters assumed here, this is At = 2.25~s. The 
simulation was carried until the electron temperature had decreased by 

FIG. 1. Electron density and temperature computed as a function of time for the rapidly ionizing 
plasma considered in Section 3A. The simulation results obtained with the larger time step At = 2.23~ 
are shown by the circles for the density and the squares for the temperature. The corresponding accurate 
solutions obtained with a smaller time step are shown with the solid and dashed lines respectively. 

581/97/2-S 
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mv2/2 (eV) 

FIG. 2. Ratio of the actual electron distribution function to a Maxwellian distribution with the same 
density and temperature, computed at t = 13.5~s. The dashed line was calculated from the simulation 
using Af = 2.25~s, while the solid line was computed from the accurate simulation. 

approximately a factor two. The time step used in this simulation is somewhat 
smaller than the electron-electron Coulomb collision time [ 151, Af/z,,, N 0.06. We 
note that the electron distribution function which results is, in general, not 
Maxwellian. The temperature considered here is defined such that 3n,T,/2 is the 
mean electron thermal energy. The results are shown in Fig. 1 for the electron tem- 
perature (squares) and density (circles) as a function of time. Figure 2 (dashed) 
shows the ratio f/fM of the final electron distribution function to a Maxwellian dis- 
tribution with the same density and temperature. The entire simulation was com- 
pleted in six time steps and the temperature is found to vary by approximately 10% 
at each time step. Only three iterations were required, to conserve the net charge 
density to one part in 10’ throughout. Also shown in these figures are the accurate 
electron density (solid) and temperature (dashed), and the ratio f/fM (solid) 
obtained with a much smaller time step. By comparison, the simulation done with 
At = 2.25~s is seen to be accurate within approximately 3 %. 

B. Recombining Plasma 
We now consider a plasma made initially of 100 % fully ionized carbon of density 

nc = 102’md3, with an electron temperature T, = 1OOeV. According to the empirical 
model, the initial radiative recombination rate is v, = 1083s’. The Coulomb colli- 
sion time is estimated to be r c0l N 46ns. This is smaller than the recombination time 
(v, ’ ) by a factor approximately 2 x 104. The simulation was done with a time step 
At = 10~s until the electron temperature decreased by approximately a factor of 2. 
The time step considered here is approximately one-hundredth of the reciprocal of 
the initial recombination rate. It is, however, much larger than the electron-electron 
Coulomb collision time (At/z c0l N 217). The results are shown in Fig. 3 for the elec- 
tron density (circles) and temperature (squares), and in Fig. 4 for the distribution 
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FIG. 3. Electron density and temperature computed as a function of time for the recombining plasma 
considered in Section 3B. The simulation results obtained with the larger time step At = 10~s are shown 
by circles for the density and the squares for the temperature. The corresponding accurate solutions 
obtained with a smaller time step are shown with the solid and dashed lines respectively. 

of ionisation stages (circles). As in the first case, this simulation was repeated with 
a smaller time step to yield an accurate solution. In the simulation done with 
At = lops, the number of iterations required to conserve charge density to one part 
in lo8 varied between 4 and 5. The electron density and distribution of ionisation 
stages calculated with the larger time step are seen to be accurate within 4%. The 
error in the temperature, however, is somewhat larger. In particular, the final 
temperature is overestimated by approximately 14% when At = 10~s. 

The difficulty in this case is caused by the use of a time splitting technique with 

0.0 
0 20 40 60 a0 100 120 

t(w) 

FIG. 4. Distribution of the three main charge stages as a function of time, for the recombining 
plasma of Section 3B. The circles result from the simulation done with At = lops. The solid lines 
represent the accurate solution obtained with a much smaller time step. 
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two processes characterized by very different time scales. During the Boltzmann or 
atomic physics step, the plasma is formally treated as collisionless and the electron 
distribution function is allowed to deviate from a Maxwellian. During the collision 
or Fokker-Planck step, however, the strong electron+lectron collisions restore the 
electron distribution function back to an almost exact Maxwellian. In reality, colli- 
sions and atomic processes are taking place simultaneously and, because of the 
strong collisions, the electron distribution function should never be allowed to 
deviate significantly from a Maxwellian. This problem can be corrected by choosing 
a sufficiently small time step to prevent significant departures from a Maxwellian 
distribution. This is how the accurate solutions (solid and dashed) were obtained 
in Figs. 3 and 4. An alternate and numerically more satisfactory solution would be 
to account for both collisions and atomic processes simultaneously and fully 
implicitly. This generalization of the solution algorithm is beyond the scope of the 
present article. In short, because the Fokker-Planck operator is nonlinear in ,f, it 
would involve solving a set of coupled nonlinear equations for the fi. 

C. Convergence 

The iterative procedure described in Section 2C yields, if it converges, an exact 
solution to Eqs. (7) and (8) in the limit when c( goes to infinity. In practice, only 
a finite number of iterations can be made, and it is necessary to find a criterion for 
determining when the approximate solution f”, n’ is sufficiently close to the exact 
solution. We now consider three such convergence criteria for the two cases 
considered in the previous paragraph. In this discussion, we restrict our attention 
to Eqs. (11) and (12) for the coronal limit. 

A good convergence criterion is one which directly assesses how well the various 
equations are satisfied. The first two citeria considered are constructed to assess 
how well Eqs. (9) and (10) are satisfied at each iteration. Specifically, we define 

(15) 

(16) 

By definition of f* in Eq. ( 1 1 ), ET vanishes if f” - ’ is replaced by f” in Eq. ( 15). 
Similarly, E; vanishes if nrpl is replaced by na in Eq. (16). Thus, at convergence, 
when f” and na approach f* ~ ’ and n’ .- ‘, both E; and cl; must approach zero. The 
parameters E: and EC; indicate how well the systems of Eqs. (10) (with j= 1, N) and 
(9) (with i=O, Z) are satisfied globally. 

We consider a third convergence criterion, based on the conservation properties 
of the system of Eqs. (9) and (10). We have seen in Section 2 that Eqs. (7) and (8) 
conserve the net electrical charge. It can also be verified that the finite difference 
form of these equations, Eqs. (9) and (lo), also conserves the net charge density. 
The non-converged solution, f” and n’, on the other hand, do not conserve charge, 
in general, which suggests an ad hoc convergence criterion based on charge 
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conservation. This criterion is simple to evaluate, and it involves quantities which 
need to be calculated anyway. Assuming a unit electron charge for simplicity, we 
define the electron and ion charge density at iteration step c1 as 

p& = C in: 

and 

P,“, = -c.rp,. 

The third convergence criterion is then defined as 

(17) 

(18) 

(19) 

As an example, the values of E computed during the first time step of simulations 
A and B are shown in Fig. 5. For a given simulation, the rate of convergence is seen 
to be nearly the same for all three E. Also, .z3 is always the smallest, and E,, the 
largest of the three E, the ratio c1/a3 being nearly independent of the iteration step. 
These results suggest that charge conservation s3 may be used as a practical ad hoc 
conservation criterion. 

The simulations considered here show a relatively fast convergence to the solu- 
tion. The iterative solution presented in Section 2 is generally found to be robust 
and to converge, even in cases where the time step is well in excess of what would 

Iteration number 

FIG. 5. Convergence criteria computed at each iteration step during the first time step of simulations 
A and II of Section 3; E, and E* are represented by squares and triangles, respectively. The relative charge 
nonconservation Ed is shown by circles. The values of E computed for the ionising plasma (case A in 
Section 4) are represented by closed symbols while those computed for the recombining plasma (case B) 
are represented by open symbols. 



364 MARCHANDANDMATTE 

normally be considered acceptable for a meaningful solution. For example, if the 
time step used in case B (which exhibits the slower convergence) is multiplied by 
a factor 10 (dt -+ IOO,US), both s1 and E* are still less than 2 x lo-‘, and s3 is less 
than lo-* after 10 iterations in the first time step. During that time, the density of 
fully ionized carbon decreases by more than 42%, the electron density decreases by 
9%, and the electron temperature decreases by 18%. The iterations still converge 
(although very slowly) if the time step is further increased by a factor two. There 
is no convergence, however, when At becomes larger than approximately 250~s. We 
note finally, that convergence is found empirically, to be relatively insensitive to the 
initial conditions assumed for the electron distribution function or for the distribu- 
tion of ionisation stages. The main condition required for good convergence is that 
the macroscopic quantities such as the electron density and temperature, and the 
density of the dominant ionisation stages, should not vary too much (say by 15 % 
or less) within a single time step. 

4. SUMMARY AND CONCLUSIONS 

A simple and efficient algorithm is presented for consistently modelling ionisation 
dynamics and electron kinetics in a plasma. The electron distribution function is 
governed by a Boltzmann equation which accounts for electron impact excitation 
and ionisation, together with radiative and dielectronic recombination. This equa- 
tion and the ion rate equations are solved simultaneously and fully implicitly by 
iterations. For coronal plasmas, the method is found to be robust. It gives excellent 
convergence and charge conservation in only a few iterations provided that macro- 
scopic parameters do not vary too rapidly in a single time step. Robustness and 
rapidity of convergence are often key issues, particularly when modelling mixtures 
of several ion species, or ions with large atomic numbers. In these cases, the time 
required to solve for atomic and electron kinetic processes can amount to a large 
fraction of the total simulation time. The iterative solution procedure proposed here 
can readily be extended to account for super elastic processes and three-body 
recombination, provided that these effects are sufficiently small to be treated 
perturbatively. 

ACKNOWLEDGMENTS 

The authors gratefully acknowledge financial support from the Atomic Energy of Canada Limited and 
the Natural Sciences and Engineering Research Council of Canada. 

REFERENCES 

1. C. J. ELLIOT AND A. E. GREENE, J. Appl. Phys. 47, 2946 (1976). 
2. A. R. BELL, R. EVANS, AND D. J. NICHOLAS, fhys. Reu. Letr. 46, 243 (1981). 



IONISATION DYNAMICS AND ELECTRON KINETICS 365 

3. J. P. MATTE AND J. VIRMONT, Phys. Rev. Letf. 49, 1936 (1982). 
4. C. GORSE, M. CAPITELLI, J. BRETAGNE, AND M. BACAL, Chem. Phys. 93, 1 (1985). 
5. J. BRETAGNE, G. DELOUYA, C. GORSE, M. CAPITELLI, AND M. BACAL, J. Phys. D 18, 811 (1985). 
6. G. J. PERT, J. Compuf. Phys. 39, 251 (1981). 
I. J. C. GAUTHIER, P. GEINDRE, N. GRANDIOUAN, AND J. VIRMONT, J. Phys. D: Appl. Phys. 16, 321 

(1983). 
8. D. R. BATES, F. R. S. D’A. E. KINGSTON, AND R. W. P. MCWHIRTER, Proc. R. Sac. London Ser. A 

267, 297 (1962). 
9. J. S. CHANG AND G. COOPER, J. Comput. Phys. 6, 1 (1970). 

IO. K. L. BELL, H. B. GILBODY, J. G. HUGHES, A. E. KINGSTON, AND F. J. SMITH, J. Phys. Chem. Rclf: 
Dafa 12, 891 (1983). 

11. R. A. HULSE, Nucl. Technol. Fusion 3, 259 (1983). 
12. R. M. MORE, J. Quant. Spectrosc. Radial. Transf: 27, 345 (1982). 
13. R. MARCHAND, S. CAILLB, AND Y. T. LEE, J. Quant. Spectrosc. Radial. Trans. 43, 149 (1990). 
14. M. N. ROSENBLUTH, W. M. MACDONALD, AND D. L. JUDD, Phys. Rev. 107, 1 (1957). 
15. L. SPITZER, JR., “The Physics of Fully Ionized Gases” (Interscience, New York, 1956). 


